PVC和EVA有什么区别

发布时间:2025-05-29 点击:6
pvc和eva有什么区别
很多人一定听说过pvc,但是糊里糊涂的并不清楚它到底是个什么。其实pvc就是一种在生活中用途广泛的材料,几乎每个人都用到过用pvc制成的东西。然而现实中却很少有人真的搞清楚了pvc是什么意思,那就跟着专业人士来了解了解真正的pvc是什么意思呢。
pvc
pvc是英文polyvinylchloride的简称,中文学名也就是聚氯乙烯。采用非结晶性材料作为原材料,在抗氧化,抗强酸以及抗还原上都有着超高的性能。聚氯乙烯还具有高强度和优秀的稳定性,并且不易燃,能够抵抗气候变化带来的腐蚀侵害等现象。是非常好的材料,因其安全性高,所以在生活中随处可见。
与此同时,pvc作为全球产量巨大的塑料产品,分为软硬两种pvc类型,分别为不同的使用场合提供了不同的选择。其中软pvc通常被当做地板以及天花板的表层材料使用,而硬pvc材料则更多地被运用在瓦楞板,门窗结构,各种化学工业制造中。并且pvc材料还具有可改变性,通过加入不同的添加剂,能够改变pvc的物理性能已经其力学性能,能够应对不同的使用场合。例如上文提到过的软硬两种pvc,甚至还能制成透明材料以供特殊需求。
特性
pvc材料不仅具有耐腐蚀,不易燃,绝缘,抗氧化等诸多优点,同时因为它的可再加工以及制作成本低廉等特点,使得pvc在材料市场上始终保持着居高不下的销量。这同时也要归功于它广泛的用途以及亲民的价格。多种功能并没有让它身价上涨,反而一直以便宜的价格霸占着材料市场的一块地。目前我国在pvc材料的改进以及设计技术已经达到了国际先进水平。从以前的需要从国外进口特殊pvc材料到如今已经可以用我们自主研发生产的pvc来代替进口,并且以及开始向国外出口产品。
主要危害
聚氯乙烯也是经常使用的一种塑料,它是由聚氯乙烯树脂、增塑剂和防老剂组成的树脂,本身并无毒性。但所添加的增塑剂、防老剂等主要辅料有毒性,日用聚氯乙烯塑料中的增塑剂,主要使用对苯二甲酸二丁酯、邻苯二甲酸二辛酯等,这些化学品都有毒性,聚氯乙烯的防老剂硬脂酸铅盐也是有毒的。含铅盐防老剂的聚氯乙烯(pvc)制品和乙醇、乙醚及其他溶剂接触会析出铅。含铅盐的聚氯乙烯用作食品包装与油条、炸糕、炸鱼、熟肉类制品、蛋糕点心类食品相遇,就会使铅分子扩散到油脂中去,所以不能使用聚氯乙烯塑料袋盛装食品,尤其不能盛装含油类的食品。另外,聚氯乙烯塑料制品在较高温度下,如50℃左右就会慢慢地分解出氯化氢气体,这种气体对人体有害,因此聚氯乙烯制品不宜作为食品的包装物。
由于一次性医疗器械产品大多采用医用级聚氯乙烯(pvc)或聚碳酸酯(pc),而pvc加工过程中的热分解物对钢材有较强的腐蚀性,pc则硬度高,粘性大,因而对塑化部分的零部件材质要求必须是能抗腐蚀、抗磨损而且有较高的抛光性能。大多数医用注塑机采用机筒螺杆镀硬铬的办法或者采用不锈钢为材料制作机简螺杆以达到上述特殊要求。另外,为了防止pvc加工过程中热分解产生气体,要求对动定模板表面进行镀铝处理,而且对外围板金也进行镀铝处理或者采用不锈钢板制作板金,板金拼缝采用无毒硅胶进行密封,以防塑料加工过程中产生的气体跑到外面(塑料加工过程中产生的气体可通过专用设备进行集中收集再经过净化处理方可排入大气中)。
pvc是二恶英的主要来源。二恶英(tcdd),二氧(杂)芑家族中最致命的物质,是一种众所周知的致癌物质和荷尔蒙分解者及一种有毒的化合物,对人和动物有着很大的危害。当pvc生产、回收和在焚烧炉中毁弃时,或者pvc的产品在意外燃烧时如垃圾掩埋时,就会产生二恶英。
在有大量需求的情况下,就容易出现鱼龙混杂,质量参差不齐的现象。尤其是在普通用户自己购买pvc材料的时候,往往容易被小店家的黑心老板忽悠。劣质的pvc材料在耐磨性,抗污染上的性能远远比不上质量好的pvc材料。用劣质的pvc制成的产品不仅功能性欠佳,并且使用寿命也非常的短。因此大家在自行购买pvc材料时请一定要到相关的专卖店内进行选购。以上就是有关pvc是什么意思的内容,希望能对大家有所帮助!
石油行业发展前景
全球的石油化工工业产品销售额可达每年2.9万亿美元,远高于全球市场上的石油销售额,而且虽然需求量高度集中在成熟的市场,但在新兴经济体中也得到了强劲的增长,石油化工市场已真正实现了全球化(非洲的情况可能是个例外,那里的需求量仅仅占全球需求量的3%)。石油化工产品已成为工业与人们日常生活中不可缺少且无法替代的组成部分,直接产品有塑料包装袋、农用化学品、涂料,这些产品占化工产品总量的80%以上。一些尚未被人们熟悉的产品有飞机制造(10%)、房屋用品(20%)、制药设备(30%)。化工产品的用途日益广泛是新兴经济体的关键因素,从基础建设到工业包装、消费者产品领域都得到了发展。乙烯本身的直接应用并不多(如在西班牙,人们将乙烯用于西红柿的催熟,但应用得并不广泛)。同样,乙烯也有许多衍生物,如塑料(聚乙烯、聚氯乙烯)和纤维(聚对苯二酸盐和聚醋)。在美国,约70%的终端利用是非耐用产品,包括管材、汽车部件和电器部件。许多广泛的用途都集中在基本经济活动上,如包装业与建筑业。石油化工工业与gdp之间有着非常密切的关系。
不同的产品与区域之间的gdp变化主要取决于它们的成熟程度。正如我们所看到的那样,在中国与东南亚所出现的经济高速增长已经导致亚洲(日本除外)乙烯的需求量增长率高达75%,世界其他地区的增长率则仅为3.2%。随着gdp构成的多重性,这种增加可以扩大在整体经济增长中这些变化的影响程度,进而导致库存物资的大规模流通,对于可储存的下游产品来说,这种特征更加突出。暂时的短缺对价格的影响更大,涉及消费者与储备供应两个方面,由于较高的利润会刺激较高的工业发展,对此,生产与供应就会表现出某些灵活性。然而,更难保证的就是那些潜在的需求中任何额外的增加而不是暂时的供给中断,原因在于国际制裁与消费主流中的长期交付期,以及新增的产能。
过多的利润会促使过度投资,几乎与此同时发生的是生产能力过剩与利润的大幅度下跌。即使在过去的10年中出现了一些合并,乙烯工业依然保持着相对的分散性,对任何天然气市场机遇的限制都会导致由减产引起的投资减少。由于高密度资本的投入与大量石油化工产品与市场的高度融合,获利的生产者感到有必要继续生产,即使他们已经受到损失也在所不惜,因为他们要稳定价格,或者在出现一个循环的低迷时期,生产者也会努力保住自己的领先地位。石油化工工业的极速增长,曾经发生在20世纪70年代的工业化国家中。对于当代的石油化工工业来说,一个关键因素就是需求的增长与现有的生产能力之间的失衡,这与需求增长或生产的价格优势严重脱节有关。
20世纪80年代,美国的生产能力再次增加,开始开采大量便宜的天然气,而欧洲人则致力于将石脑油作为满足当地需求的最便宜资源。这两种方式现已无人采纳,新兴的市场既可满足需求也可供给充足的生产原料,这可以体现竞争优势。这种失衡的解决可能会使这些生产者感到痛苦,但却可为那些善于把握的人们提供重要机遇。
影响需求、供给、利润和价格的原因是什么?石油化工生产能力的新浪潮还有空间吗?如果没有,会有赢家吗?或者仅剩输家?正是它的重要性,使得乙烯工业显得极其有效------它是整个石油化工工业关键的驱动力的标志。碧水源 的mbr项目是什么意思
mbr又称膜生物反应器(membrane bio-reactor),是一种由膜分离单元与生物处理单元相结合的新型水处理技术。膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。
一、 mbr 工艺的组成
膜- 生物反应器主要由膜分离组件及生物反应器两部分组成。通常提到的膜 - 生物反应器实际上是三类反应器的总称: ① 曝气膜 - 生物反应器(aeration membrane bioreactor, ambr) ; ② 萃取膜 - 生物反应器( extractivemembrane bioreactor, embr ); ③ 固液分离型膜 - 生物反应器( solid/liquid separationmembrane bioreactor, slsmbr, 简称 mbr )。
二、曝气膜 - 生物反应器
曝气膜 -生物反应器最早见于 cote.p 等 1988年报道,采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( bubble point)情况下,可实现向生物反应器的无泡曝气。该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响。如图 [1] 所示。
图 [1]
三、萃取膜 - 生物反应器
萃取膜 - 生物反应器 又称为 embr (extractive membrane bioreactor)。因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。为了解决这些技术难题,英国学者 livingston研究开发了 emb 。其工艺流程见图 2。废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解。由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定。系统的运行条件如 hrt 和 srt 可分别控制在最优的范围,维持最大的污染物降解速率。
四、固液分离型膜 - 生物反应器
固液分离型膜 - 生物反应器是在水处理领域中研究得最为广泛深入的一类膜 -生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术。在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性污泥的沉降性能,沉降性越好,泥水分离效率越高。而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围。由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在 1.5~3.5g/l左右,从而限制了生化反应速率。水力停留时间( hrt )与污泥龄( srt)相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾。系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的 25% ~40% 。传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化。针对上述问题, mbr将分离工程中的膜分离技术与传统废水生物处理技术有机结合,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌 (特别是优势菌群 ) 的出现,提高了生化反应速率。同时,通过降低 f/m比减少剩余污泥产生量(甚至为零),从而基本解决了传统活性污泥法存在的许多突出问题。
五、 mbr 工艺类型
以下讨论的均为固液分离型膜 - 生物反应器。 根据膜组件和生物反应器的组合方式,可将 膜 - 生物反应器 分为分置式、一体式以及复合式三种基本类型。分置式和一体式的 mbr 请参见图 3 。
分置式膜 - 生物反应器把膜组件和生物反应器分开设置,如图 3所示。生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内。分置式膜 -生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大。但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高 (yamamoto, 1989),并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象 ( brockmann and seyfried, 1997 ) 。
一体式膜 - 生物反应器是把膜组件置于生物反应器内部,如图 4 所示。进水进入膜 -生物反应器,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水。这种形式的膜 -生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注。但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换。
复合式膜 - 生物反应器在形式上也属于一体式膜 - 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜 - 生物反应器,改变了反应器的某些性状,如图 5 所示:
mbr 工艺的特点
与许多传统的生物水处理工艺相比, mbr 具有以下主要特点:
一、出水水质优质稳定
由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和浊度接近于零,细菌和病毒被大幅去除 ,出水水质优于建设部颁发的生活杂用水水质标准( cj25.1-89 ),可以直接作为非饮用市政杂用水进行回用。
同时,膜分离也使 微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。
二、剩余污泥产量少
该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。
三、占地面积小,不受设置场合限制
生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。
四、可去除氨氮及难降解有机物
由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。
五、操作管理方便,易于实现自动控制
该工艺实现了水力停留时间( hrt )与污泥停留时间( srt )的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。
六、易于从传统工艺进行改造
该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。
膜 - 生物反应器也存在一些不足。主要表现在以下几个方面:
o 膜造价高,使膜 - 生物反应器的基建投资高于传统污水处理工艺;
o 膜污染容易出现,给操作管理带来不便;
o 能耗高:首先 mbr 泥水分离过程必须保持一定的膜驱动压力,其次是 mbr 池中 mlss 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成 mbr 的能耗要比传统的生物处理工艺高。
mbr 工艺用膜
膜可以由很多种材料制备,可以是液相、固相甚至是气相的。目前使用的分离膜绝大多数是固相膜。根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜。膜可以是均质或非均质的,可以是荷电的或电中性的。广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜。
膜的分类如图所示:
一、 mbr 膜材质
1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等。
有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短。
2、无机膜 :是固态膜的一种,是由无机材料,如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜。
目前在 mbr 中使用的无机膜多为陶瓷膜,优点是:它可以在 ph = 0~14 、压力 p<10mpa 、温度 10mm; 毛细管式- 0.5~10.0mm ;中空纤维式 。
表:各种膜组件特性
名称/项目 中空纤维式 毛细管式 螺旋卷式 平板式 圆管式
价格(元 /m 3 ) 40~150 150~800 250~800 800~2500 400~1500
冲填密度 高 中 中 低 低
清洗 难 易 中 易 易
压力降 高 中 中 中 低
可否高压操作 可 否 可 较难 较难
膜形式限制 有 有 无 无 无
mbr 工艺中常用的膜组件形式有:板框式、圆管式、中空纤维式。
板框式:
是 mbr 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机。优点是:制造组装简单,操作方便,易于维护、清洗、更换。缺点是:密封较复杂,压力损失大,装填密度小。
圆管式:
是由膜和膜的支撑体构成,有内压型和外压型两种运行方式。实际中多采用内压型,即进水从管内流入,渗透液从管外流出。膜直径在 6~24mm 之间。圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小。缺点是:装填密度小。
中空纤维式:
组装形式如下图所示:
[ 图 ]
外径一般为 40 ~ 250 μm ,内径为 25 ~ 42μm 。优点是:耐压强度高,不易变形。在 mbr中,常把组件直接放入反应器中,不需耐压容器,构成浸没式膜 -生物反应器。一般为外压式膜组件。优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料。缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响。
mbr 膜组件设计的一般要求:
o 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区;
o 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染;
o 尽可能高的装填密度,安装,清洗、更换方便;
o 具有足够的机械强度、化学和热稳定性。
膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等。
mbr 的应用领域
进入 90 年代中后期,膜 - 生物反应器在国外已进入了实际应用阶段。加拿大 zenon 公司首先推出了超滤管式膜 -生物反应器,并将其应用于城市污水处理。为了节约能耗,该公司又开发了浸入式中空纤维膜组件,其开发出的膜 -生物反应器已应用于美国、德国、法国和埃及等十多个地方,规模从 380m 3 /d 至 7600m 3 /d。日本三菱人造丝公司也是世界上浸入式中空纤维膜的知名提供商,其在 mbr 的应用方面也积累了多年的经验,在日本以及其他国家建有多项实际 mbr工程。日本 kubota 公司是另一个在膜 -生物反应器实际应用中具有竞争力的公司,它所生产的板式膜具有流通量大、耐污染和工艺简单等特点。国内一些研究者及企业也在 mbr实用化方面进行着尝试。
现在,膜 - 生物反应器已应用于以下领域:
一、 城市污水处理及建筑中水回用
1967年第一个采用 mbr 工艺的废水处理厂由美国的 dorr-oliver 公司建成,这个处理厂处理 14m 3 /d 废水。 1977年,一套污水回用系统在日本的一幢高层建筑中得到实际应用。 1980 年,日本建成了两座处理能力分别为 10m 3 /d 和 50m 3 /d的 mbr 处理厂。 90 年代中期,日本就有 39 座这样的厂在运行,最大处理能力可达 500m 3 /d ,并且有 100 多处的高楼采用mbr 将污水处理后回用于中水道。 1997 年,英国 wessex 公司在英国 porlock 建立了当时世界上最大的 mbr系统,日处理量达 2 , 000 m 3 , 1999 年又在 dorset 的 swanage 建成了 13 , 000m 3 /d 的mbr 工厂 [14] 。
1998 年 5 月,清华大学进行的一体式膜 - 生物反应器中试系统通过了国家鉴定。 2000年初,清华大学在北京市海淀乡医院建起了一套实用的 mbr 系统,用以处理医院废水,该工程于 2000 年 6 月建成并投入使用,目前运转正常。2000 年 9 月,天津大学杨造燕教授及其领导的科研小组在天津新技术产业园区普辰大厦建成了一个 mbr 示范工程,该系统日处理污水 25吨,处理后的污水全部用于卫生间的冲洗及绿地浇洒,占地面积为 10 平方米,处理每吨污水的能耗为 0.7kw · h 。
二、. 工业废水处理
90年代以来, mbr 的处理对象不断拓宽,除中水回用、粪便污水处理以外, mbr在工业废水处理中的应用也得到了广泛关注,如处理食品工业废水、水产加工废水、养殖废水、化妆品生产废水、染料废水、石油化工废水,均获得了良好的处理效果。 90 年代初,美国在 ohio 建造了一套用于处理某汽车制造厂的工业废水的 mbr 系统,处理规模为 151m 3 /d,该系统的有机负荷达 6.3kgcod/m 3 · d , cod 去除率为 94%,绝大部分的油与油脂被降解。在荷兰,一脂肪提取加工厂采用传统的氧化沟污水处理技术处理其生产废水,由于生产规模的扩大,结果导致污泥膨胀,污泥难以分离,最后采用 zenon 的膜组件代替沉淀池,运行效果良好。
三、. 微污染饮用水净化
随着氮肥与杀虫剂在农业中的广泛应用,饮用水也不同程度受到污染。 lyonnaisedeseaux 公司在 90 年代中期开发出同时具有生物脱氮、吸附杀虫剂、去除浊度功能的 mbr工艺, 1995 年该公司在法国的 douchy 建成了日产饮用水 400m 3 的工厂。出水中氮浓度低于 0.1mgno 2 /l,杀虫剂浓度低于 0.02 μ g/l 。
四、. 粪便污水处理
粪便污水中有机物含量很高,传统的反硝化处理方法要求有很高污泥浓度,固液分离不稳定,影响了三级处理效果。 mbr 的出现很好地解决了这一问题,并且使粪便污水不经稀释而直接处理成为可能。
日本已开发出被称之为 ns 系统的屎尿处理技术,最核心部分是平板膜装置与好氧高浓度活性污泥生物反应器组合的系统。 ns 系统于 1985年在日本琦玉县越谷市建成,生产规模为 10kl/d , 1989 年又先后在长崎县、熊本县建成新的屎尿处理设施。 ns 系统中的平板膜每组约0.4m 2 共几十组并列安装,做成能自动打开的框架装置,并能自动冲洗。膜材料为截流分子量 20000 的聚砜超滤膜。反应器内污泥浓度保持在15000~18000mg/l 范围内。到 1994 年,日本已有 1200 多套 mbr 系统用于处理 4000 多万人的粪便污水。高凝高黏原油输送技术
由于中国近海油田产出的原油多具有高凝固点、高黏度以及高含蜡特性,因此在渤海湾、北部湾和珠江口海域已开发的海上油田所铺设的海底输油管道,全部采用热油输送工艺和保温管道结构。
海底高凝、高黏原油管道输送技术,是我国从海底管道工程起步阶段就注意研究和引进的。从20世纪80年代初期渤海的埕北、渤中28-1、到渤中34-2/4油田和南海北部湾涠10-3油田开发配套的海底输油管道工程,都涉及如何解决好原油输送技术的问题。我们结合油田原油特性,与日本和法国石油工程界合作,研究采用了安全可靠的工程对策,学习引进了相关设计、施工和运行管理技术。随后在渤海湾和北部湾自营开发的诸多油田开发工程中,设计、铺设了众多海底输油管道,形成了我国一套完整的海底高凝、高黏原油管道输送技术。通过大量工程实践应用和检验,证明该技术是实用和可靠的。
一、输送工艺
针对高凝、高黏原油的管道输送,国内外在油田及外输管道工程上使用了各种减阻、降黏方法,诸如加化学药剂、乳化降黏、水悬浮输送以及黏弹性液膜等,进行过大量研究和试验,但由于技术上、经济上的种种原因,均未得到广泛应用。目前,最实用、最可靠的方法仍是采用加热降黏防止凝固的输送工艺。
对高凝原油,为防止原油在管道输送过程中凝固,依靠加热使管道中的原油温度始终维持在凝固点以上。
对高黏原油,采用加热降低黏度,满足管道压降需求和节约泵送能耗。当然,在采用热油输送工艺的同时,一般都相应采用保温管道结构。
(一)工艺模拟计算分析
海上油田开发工程涉及到的海底输油管道,其输送工艺模拟计算,一般要根据油田地质开发提供的逐年产量预测(并考虑一定设计系数),计算不同情况(管径、输量、入口温度等)下的压降、温降以及管道内液体滞留量和一些必要的工艺参数。依此选择最佳管径,确定出不同情况下的工艺参数(不同生产年的输送压力、温度等)。
近年来,原油管道输送工艺模拟计算分析普遍采用计算机模拟程序进行。中国海油从加拿大neotec公司引进了pipeflow软件,该软件与流行的pipesim、pipephase等商业软件类同,汇编了各种计算方法及一些修正系数、参考数据库,供设计分析者选用。
(二)保温材料的选择和厚度确定
对采用热油输送工艺的海底管道,热力计算是非常重要的环节,而其中管道传热系数k值又是管道热力条件的综合表现。k值除受管道结构影响外,埋地的地温条件、保温材导热系数和保温材厚度是三大影响因素。
从计算分析结果看,由于地温变化不大对k值影响不明显,只是在低输量时,要注意其对终温的影响。
保温材性质和保温层厚度是影响k值最关键的因素,也是影响管道终温的关键因素。目前国内选用的保温材料与国外最常用的一样,是采用聚氨酯泡沫塑料。这是一种有机聚合物泡沫,能形成开孔或闭孔蜂窝状结构,优点是导热系数小(≤0.03w/m2·h.℃)、密度低(40~100kg/m3)和吸水率小(≤3%),且化学稳定性好,同时工业生产成熟,价格相对便宜。从保温效果考虑,当然是保温层厚度越大越好,但是,当保温层厚度达到一定值时,保温效果的增加和厚度的增量不再呈线性增加的关系,而是增加十分平缓。特别是对海底管道,保温层厚度增加意味着外管直径增加,就长距离管道而言,外管增加一级管径,钢管用量和施工费增加都是十分可观的。因此,根据计算分析和优化设计,认为选用保温层厚度为50mm是合理的。
(三)停输和再启动计算分析
停输和再启动计算分析是高凝、高黏原油海底管道工艺设计的重要内容,将直接关系到管输作业的安全和可靠。
停输后的温降分析,视为最终确定管道安全时间。对于采用热油输送工艺的管道停输后,随着存油热量散失,原油将从管壁向管中心凝固,凝层的加厚及凝结时释放的潜热将延缓全断面凝固的过程。存油凝固时间取决于管道保温条件、油品热容、停输时的温度和断面直径。通常这些数值越大,全断面凝固时间就越长。一般凝油层厚度在管道轴向是一个变化值,通常以管道终断面凝油厚度作为安全停输时间的控制值。
对于加热输送的高凝、高黏原油管道发生停输,且预计在安全停输时间内时,不能恢复管道输油,为保证管道安全,最有效的措施是在管内存油开始凝固时,用水或低凝油将其置换。
停输后的再启动分析,是考虑管道发生停输后可能出现的最不利工况和环境条件,此时要恢复通油,需计算所需的再启动压力和提出实现再启动要采取的措施以及增设必要的设备和设施。
通常,再启动压力(p),用下式计算:
中国海洋石油高新技术与实践
式中:p为再启动压力(pa);p。为管道出口压力(pa);di为管道内径(m);τ为原油在停输环境温度下的屈服应力(pa);l为管道可能凝固的长度(m)。
(四)水化物和冲蚀的防止措施
海上油田开发工程涉及的输油管道,是一种与陆上原油长输管道和海上原油转输管道不同的管道,它是从井口平台产出的原油气水混输至中心处理平台或浮式生产贮油装置的油田内部集输管道。该类海底管道输送时伴有从井口采出的水和气,属于混输管道,对这类油管道,也是采用加热输送工艺和保温管道结构。
做这类混输油管道的工艺设计,除做净化原油输送管道通常要进行的模拟计算分析外,还要增加段塞流分析和防止水化物和冲蚀产生的分析。
段塞流现象是油气混输过程中的一个重要问题。正常输送过程中,如何判定是否出现严重的段塞流,以及如何确定段塞流长度,目前已经有了通用的分析计算判断方法。在清管作业过程中,由于管道内存在一定的滞留液量,因此在清管器前将形成液体段塞流。在下游分离设备设计中必须考虑清管作业引起的段塞流影响,一般是设计一定的缓冲容量,使容器操作始终维持在正常液位与高液位报警线之间,确保生产正常。
水化物是影响海底混输管道操作的一大隐患,特别是在以下三种工况下可能出现水化物,为此提出了防止形成水化物的措施:①低输量状况,为防止水化物生成,要求在输送过程中,管道内油气温度始终维持在水化物生成温度以上。但在低输量状况下,温降很快,根据水化物生成曲线判断,可能会生成水化物。此时应及时注入甲醇之类的防冻液(水化物抑制剂),以防止水化物生成;②停输过程,在长期停输状态下,由于管道内油气温度降到了环境温度,且管内压力仍保持较高压力状态,所以可能生成水化物。此时,应采取的措施,一是给管道卸压,二是往管道内注入水化物抑制剂;③重新启动,通常停输后再启动,需要高于正常操作压力的启动压力,而这时温度又往往很低,故很容易生成水化物。此时应采取连续注入水化物抑制剂的做法,直到管道内温度达到正常操作温度为止。
防止产生冲蚀是油气混输管道工艺设计不容忽视的问题。对多相混输管道,若流速超过一定值时,液体中含有的固体颗粒会对管道内壁形成一种强烈的冲刷腐蚀,特别是在急转弯处如海底管道立管及膨胀弯处。因此设计时要计算避免冲蚀的最大流速,其公式为:
中国海洋石油高新技术与实践
式中:ve为冲蚀速度(ftlft=0.3048m。/s);pm为在输送状态下,多相混合物的密度(磅1磅=0.453592kg。/立方英尺l立方英尺=20831685×10-2m3。);c为经验系数,连续运行取100,非连续运行取125。
冲蚀速度是混合物密度的函数,混合物密度越大,冲蚀速度越小,混合物密度越小则冲蚀速度越大。为保证在管道内不产生冲蚀现象,应控制管内流体流速一定低于计算出的最低冲蚀速度。
(五)操作管理
对海底高凝、高黏原油管道特别要注意以下操作管理问题。
1.初始启动
初始投产运营,一般采用以下作业步骤:①用热水或热柴油预热管道,使管道建立起适应投产作业的温度场;②待测得出口温度达到设计要求后,按要求开井投产。
2.停输及再启动
停输一般分应急停输和计划停输两大类,停输情况不同,再启动方式也不同。为确保管道停输后的再启动,一般在井口平台上设置高压再启动泵。
a.对短期停输,指管内流体最低温度在某个设计值(如原油凝固点)以上,可使井口油气直接进管道或用高压泵启动。
b.对长期停输,在停输之前,应启动高压泵完成管内流体置换作业。如果事先没有准备,属于意外突然停输,一旦停输时间较长,管道内降至环境温度,原油析蜡并凝固。此时,要采用启动高压泵,用柴油置换出原油,然后按初始启动步骤进行。
3.清管
在正常生产过程中,应根据生产情况经常进行清管作业,清除管内蜡沉积和滞留液体,以提高输送效率和减小腐蚀。
4.化学剂注入
在正常输送过程中,应考虑注入以下化学剂:
防垢剂——防止管内由于原油含水而结垢使输量减少;
防蜡剂——防止原油中蜡凝结在管内沉积;
防腐剂——可在管内壁形成一层保护膜,使腐蚀液与管内壁隔离,起到保护作用;
防冻剂——甲醇之类,为防止水化物生成。
二、保温海底管道结构
对采用热油输送工艺的海底高凝、高黏原油管道,为使沿程温降减慢减小,最常见也是最实用的是将输油钢管做成保温结构。我们广泛应用了海底保温管道结构,形成了完整的设计和施工技术。
(一)已应用的结构类型及特点
海底钢管保温管道结构(在此不涉及可挠性软管海底管道),可归结为两大类型:一是双层钢管保温结构;二是单层钢管保温结构。
1.双层钢管保温结构。
或称复壁管结构,其管体断面如图15-3所示。在这一类型中,又存在三种形式。
图15-3 双钢管保温结构
图15-4 带封隔法兰的双层钢管保温结构
第一种形式:管体结构如图15-4所示。单根管节(一般长度为12m或40ft)每端均设较强的封隔法兰。在内外管之间的环形空间,注入发泡材料,形成封闭止水保温单元。这个单元内外管靠两端封隔法兰连为一体,内管的热伸缩靠封隔法兰强行约束,使内外管不发生相对错动。海上铺管时,相邻两个管节的外管,用两个半瓦短节相接。这种形式的优点在于万一管道外管或接口处发生破损,保温失效就被限制在最小范围内。缺点是接口焊接工作量大,用铺管船法铺管,速度上不去,致使工程费用高。
图15-5 带特殊接头的双层钢管保温结构
图15-6 内外管可相对移动的双钢管保温结构
第二种形式:保温管节两端内外管采用特殊接头连接,如图15-5所示。最早是由壳牌石油公司等提出研究,后来为意大利snamprogetti公司开发成专利产品,它已在一些海底管道工程中投入使用。显然,这种形式已经保留了第一种形式的优点,又克服了其不足。在铺管船上它可以像铺单层钢管一样,多个焊接站进行流水作业,使海上铺管速度大大增加。这种形式的问题在于接头是专利产品,费用高。我国南海东部惠州26-1油田的海底输油管道应用了该专利产品。
第三种形式,如图156所示。这种形式,内外管可做相对移动。在海上连接时,内管接口焊好后,补上接口保温材料,然后拉动外管进行对接,无需采用半瓦管。相对来讲,可减少海上焊接工作量,提高铺管速度。中国海油通过与日本的公司合作,引进了这种形式保温海底管道设计与海上安装技术,在已经铺设的诸多海底输油管道上均采用了这种结构形式。
2.单层钢管保温结构。
这类结构与双层钢管保温结构的区别在于外面的护套管不用钢管。按照外套管材料不同,又可分为以下五种。
第一种,高密度聚乙烯外套(highdensity polyethylene jacket)。高密度聚乙烯是一种超高分子量聚合物,它是阻止水蒸气通过的极好材料。这种超高分子量改善了钢管抗磨、抗冲击、抗撕裂和整体物理强度力学性质。这种预成型的外套系统,与钢管外套相比,具有重量轻、无需作防腐蚀保护的特点。暴露在管节两端的保温泡沫采用热缩性聚合物端帽保护,现场接点处也用热收缩套作止水防腐蚀处理。这种外套系统已被欧美国家的公司在阿拉伯湾、加蓬外海的海底管道工程中应用,最近几年,应用水深已达43m。
第二种,锁接螺旋钢外套(spirally crimped steel jacket)。这种外套的特点是用钢量远低于采用常规钢管的管道外套。现场接口处不需对焊,暴露在管节端部的泡沫保温材料仍用热缩性端帽保护。这种外套系统,在国外已广为应用,最大应用水深已达55m。
第三种,模制的聚氨酯外套(molded polyurethane jacket)。这种外套将防腐蚀材料和聚氯乙烯(pvc)泡沫保温材料结合为一体(图15-7)。其优点是:①管道能保持较好的柔度,可用卷绕船铺设。②在海底万一外套被损伤,暴露在水中的保温材料很少,不像其他系统会整个管节泡水。③在保证泡沫干燥方面有较高可靠度。
图15-7 模制聚氨酯外套保温结构
图15-8 橡胶外套保温结构
第四种,橡胶外套(rubberjacket)。与模制聚氨酯外套相似(图15-8)。只是外套是由pvc泡沫与橡胶层组成。大约每层pvc厚5~8mm,橡胶层厚1mm,层数的多少取决于保温要求,但最外层的pvc泡沫要用较厚的橡胶层来覆盖保护。
第五种,取消外护套系统。在输油钢管的外面施加的保温材料,既能防水也有良好的保温性能,同时又能抗较高的静水压力和具有抗机械破坏较强的能力。这种结构应该说是真正意义上的单层钢管保温结构。
(二)设计和施工关键技术
在我国建成的海底钢管保温管道绝大多数是双重钢管保温结构。该项保温结构的设计和施工技术是由中国海油从日本引进的。
1.设计关键技术
双重钢管保温结构的海底管道设计,关键技术是平管部分结构分析和立管膨胀弯系统的整体分析。
对平管部分的结构分析,应用日本新日铁公司开发的“dpipe”计算机分析程序。该分析程序的结构模型如图15-9所示。
图15-9 平管结构分析模型
a,a′—外管的不动点;b,b′,e,e′一内外管之间的锚固点(隔舱壁);d—内管的不动点;kb,kb′—弹簧常数;wf—与土壤的摩擦荷载;a-a′—不动部分(外管);li+lm,li′+lm′—可动部分(外管)
图中,模拟两端立管膨胀弯约束的弹簧刚度kb、kb′由其后说明的立管膨胀弯和平管连接整体分析模型求出。
对埋地管道,管土之间的摩擦荷载wf由下式计算:
中国海洋石油高新技术与实践
式中:w=r'hdo;μ是摩擦系数;do为管道外径;ws为管道水下单位重量;r′为土壤水下容重;h为埋深。
对立管膨胀弯系统的整体分析,采用日本新日铁公司开发的大型三维管道结构分析程序“pides”软件。
图15-10给出按该软件建立三维结构分析模型的一个工程实例图。
图15-10 立管膨胀弯系统结构分析模型实例示意图
图15-11 工况组合分析实例示意图
对所建立的系统结构分析模型,要按规范要求和工程实际情况进行充分和必要的多种荷载工况组合分析,一般要考虑的荷载有功能荷载(压力、温度、质量等)、环境荷载(风、浪、流、冰等)、特殊荷载(如地震)以及立管依附的平台位移和平管膨胀伸长施加的荷载。
图15-11给出了一个立管膨胀系统工况组合分析的实例,荷载作用方向是要考虑的重要因素。
2.施工关键技术
从日本引进的双重钢管保温结构的海底管道陆上预制和海上安装技术,主要特点是:预制时单根管节(12m长)保温材固定在内管上,保温材与外管内壁间有一定量空气层,允许内外钢管相互移动,只是在一定长度上(比如2km或1km)才设置刚性锚点法兰形成环形空间的水密隔舱。这样,在海上铺管法安装时,管节连接将能如前图15-6所示,内管焊接合格再补上接口防腐涂装和相应保温材后,采用拉移外管对口焊接的做法,会明显减少外管接口焊接工作量,提高海上铺管速度。
(三)在渤海蓬莱(pl)19-3油田i期海底管道工程中的应用
双重钢管保温结构的海底管道,通过我国诸多工程实践的检验表明是安全可靠的,但也存在用钢量大、海上安装速度慢导致工程造价高的缺点。研究和采用单管保温结构,是保温海底管道技术发展方向。
其中采用锁接螺旋薄钢板(厚1mm)作外套的单管保温结构在2002年由phillips公司操作的蓬莱19-3油田i期海底管道工程中成功地被应用了。图15-12给出了该保温管道的断面结构。
中国海油正在研究试制用高密度聚乙烯(pe)作外套的单管保温结构管道。这项技术在国外早有应用,结合我国具体情况,特别是在渤海水深小于30m,甚至诸多滩海油田水深小于5米的情况下,采用这种保温结构经济可靠,所用材料和技术均可实现本地化和国产化,有很好的应用前景。
图15-13示出正在研制的pe外套保温管道断面结构。
图15-12 pl19-3海底管道断面结构
图15-13 pe外套保温管断面结构
表15-3给出所研制保温管道的技术参数。
表15-3 保温管道技术参数表
当然,真正意义上的单管保温结构管道,应该是取消外护套系统,在输油钢管外面施加既能防水也具良好保温性能且有较强抗静水压力及抗机械破损能力的保温材,无疑这是该项技术发展的最终方向。目前,在我国南海东部惠州26-1北油田(水深约120m)一条直径为254mm、长约8.7km的海底保温输油管道,通过深入研究和招标推动,已经具备了工程实用基础,其技术可行性和价格被接受性都得出了较好的结论。

武汉集装箱港口恢复正常运营
PIL预测,红海危机将使其在2024年保持盈利
印度寻求降低物流成本的方法
英国航空公司获得20亿英镑贷款
农技合作 全面展开
亚马逊FBA物流收费结构是怎样的(FBA已经成为许多卖家的首选)
提醒亚马逊Amazon卖家朋友2022年低物流成本陷阱先低报价收到后高收?
印度尼西亚/印尼有哪些港口